Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II) and Pb(II) Ions from Aqueous Solutions

نویسندگان

  • Mercy A. Ezeokonkwo
  • Okechukwu F. Ofor
  • Julius U. Ani
چکیده

Cd(II) and Pb(II) ions removal using adsorbents prepared from sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3, and SiO2 as being responsible for attaching the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the uptake of Cd(II) and Pb(II) ions from aqueous media were 80.93 and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II) and Cd(II) was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with I. gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II) was preferentially adsorbed than Cd(II) in all cases. Adsorption of Cd(II) and Pb(II) ions followed Langmuir isotherm. The adsorption kinetics was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (I. gabonensis seed shell) was found a viable alternative for removal of toxic heavy metals from aqueous solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II) and Pb(II) from aqueous solutions was studi...

متن کامل

Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...

متن کامل

Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study

The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...

متن کامل

Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study

The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...

متن کامل

Tea Wastes Efficiency on Removal of Cd(II) From Aqueous Solutions

Background & Aims of the Study: Heavy metals, such as cadmium (Cd(II)), enter into the environment and cause health hazard due to their toxicity and bioaccumulation in the human body. Therefore, they must be removed from water. In recent years, much attention has been focused on the use of material residues as low-cost adsorbents for the removal of heavy metal ions from aqueous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017